SUBJECTIVE SOLVED EXAMPLES

Example - 1 The vapour pressure of two miscible liquids 'A' and 'B' are 300 and 500 mm of Hg respectively. In a flask, 10 mol of 'A' is mixed with 12 mol of 'B'. However, as soon as 'B' is added, 'A' starts polymerising into a completely insoluble solid. This polymerisation follows first-order kinetics. After 100 minutes, 0.525 mol of a solute is dissolved which arrests the polymerisation completely. The final vapour pressure of the solution is 400 mm of Hg. Estimate the rate constant of the polymerisation reaction. Assume negligible volume change on mixing and polymerisation, and ideal behaviour for the final solution. [Given, $log_{10}11 = 1.04$]

SOLUTION:

We have:

$$P_{A}^{0} = 300 \text{ mm Hg}$$
 and $P_{B}^{0} = 500 \text{ mm Hg}$

$$n_{A0} = 10 \text{ mol}$$
 and $n_{B0} = 12 \text{ mol}$

Let the amount of A after 100 min is reduced to n_A.

At this stage:

$$n_{Total} = n_A + n_B + n_{Solute} = n_A + 12 + 0.525$$

Mole fractions of A and B in the solution will be

$$\chi_{A} = \frac{n_{A}}{n_{A} + 12.525}$$
 and $\chi_{B} = \frac{12}{n_{A} + 12.525}$

Since
$$P_{Total} = P_{\Delta}^0 \chi_{\Delta} + P_{B}^0 \chi_{B}$$
, we get:

$$400 = 300 \times \frac{n_A}{n_A + 12.525} + 500 \times \frac{12}{n_A + 12.525}$$

Solving for n_{Δ} , we get:

$$n_A = 9.90 \text{ mol}$$

$$nA \longrightarrow A_n$$

For the first-order kinetics, we have:

$$kt = 2.303 \log_{10} \frac{[A]_0}{[A]_t}$$

or
$$k(100 \text{ min}) = 2.303 \log_{10} \frac{10}{9.9}$$

$$\Rightarrow$$
 k=1.00×10⁻⁴ min⁻¹ = 1.67×10⁻⁶ s⁻¹

Example - 2 A first order reaction: $A \longrightarrow B$ requires activation energy of 89 kJ/mol. When 20% solution of A was kept at 27°C for 40 minutes, 25% decomposition took place. What will be the percent decomposition in the same time in a 30% solution maintained at 37°C? Assume that the activation energy remains constant in this range of temperature.

SOLUTION:

Note: It does not matter whether you take 20%, 30%, 40% or 70% of 'A' because first order reaction is independent of the initial concentration of reactant.

At 27°C, 20% of A decomposes 25%

$$\Rightarrow kt = 2.303 \log_{10} \frac{C_0}{C_t}$$

$$= 2.303 \log_{10} \frac{1}{1-\alpha} = \ell n \frac{1}{1-\alpha} [\alpha = 0.25]$$

$$\Rightarrow k(40) = \ell n \frac{100}{75}$$

$$\Rightarrow$$
 k (at 300 K) = $\frac{1}{40} \ln \frac{4}{3} \text{min}^{-1}$

Using Arrhenius equation find k at 310K.

$$\log_{10} \frac{k_{310}}{k_{300}} = \frac{E_a}{2.303 \text{ R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

$$\log_{10} \frac{k_{310}}{k_{300}} = \frac{89 \times 10^3}{2.303 \times 8.31} \left(\frac{310 - 300}{300 \times 310} \right) = 0.5$$

$$\Rightarrow$$
 k(at 310 K) = k(at 300K) $\times \sqrt{10}$

Now calculate % decomposition at 310K using first order kinetics.

$$kt = 2.303 \log_{10} \frac{C_0}{C_t}$$

$$\Rightarrow$$
 $k \times 40 = \ell n \frac{1}{1-\alpha}$

$$\Rightarrow \qquad \ell n \frac{1}{1-\alpha} = \left[\left(\frac{1}{40} \ell n \frac{4}{3} \right) \times \sqrt{10} \right] \times 40 = 0.91$$

$$\Rightarrow$$
 $\log_{10} \frac{1}{1-\alpha} = \frac{0.91}{2.303} = 0.40$

$$\frac{1}{1-\alpha} \approx 2.5$$
 \Rightarrow $\alpha = 0.5$

$$\Rightarrow$$
 $\alpha = 0.6 \equiv 60.0 \%$ decomposition of A at 310 K.

Example - 3 A certain reaction $A + B \longrightarrow products$; is first order w.r.t. each reactant with $k = 5.0 \times 10^{-3} \ M^{-1} s^{-1}$. Calculate the concentration of A remaining after 100s if the initial concentration of A was 0.1 M and that of B was 6.0 M. State any approximation made in obtaining your result.

SOLUTION:

$$A + B \longrightarrow products$$

Given: Rate =
$$k[A][B]$$
 (2nd Order reaction)

Now, since $[B] \gg [A]$, [B] can be assumed to remain constant throughout the reaction. Thus, the rate law for the reaction, becomes:

Rate
$$\approx k_0 [A]$$

where
$$k_0 = k [B] = 5.0 \times 10^{-3} \times 6.0 \text{ s}^{-1} = 3.0 \times 10^{-2} \text{ s}^{-1}$$

Thus, the reaction is now of first order [Pseudo first order].

Note: A + B
$$\xrightarrow{k}$$
 products
0.1M 6.0M
0.1-x 6.0-x

Using, 2.303
$$\log_{10} \frac{C_{0A}}{C_{1A}} = k_0 t$$

$$\Rightarrow$$
 2.303 $\log_{10} \frac{0.1}{C_{tA}} = k_0 t = 3$

$$\Rightarrow \log_{e} \frac{0.1}{C_{tA}} = 3 \qquad [\because \log_{e} x = 2.303 \log_{10} x]$$

$$\Rightarrow$$
 $C_{tA} = 10 e^{-3} = 5 \times 10^{-3} M$

Check your approximation:

$$[B]_{change} = x = 0.1 - 5 \times 10^{-3} = 0.095 \text{ M}$$

% [B]_{change} =
$$\frac{0.095}{6} \times 100\% = 1.58\%$$

Example - 4 The gas phase decomposition of N_2O_5 to NO_2 and O_2 is monitored by measurement of total pressure. The following data are obtained.

P_{total} (atm)	0.154	0.215	0.260	0.315	0.346
Time (sec)	1	52	103	205	309

Find the average rate of disappearance of N_2O_5 for the time interval between each interval and for the total time interval. [Hint: Integrated rate law is NOT to be used].

SOLUTION:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

Initial Pressure (at
$$t = 0$$
)

$$P_0$$

At
$$t = t$$

$$P_0 - 2x$$

Chemical Kinetics Vidyamandir Classes

Now:
$$P_{\text{Total}} = (P_0 - 2x) + 4x + x$$
 \Rightarrow $x = \frac{1}{3} (P_{\text{Total}} - P_0)$
 $P_{\text{N}_2\text{O}_5} = P_0 - 2x = \frac{(5P_0 - 2P_{\text{Total}})}{3} = P_t$

Thus, $\Delta P_{\text{N}_2\text{O}_5} = \frac{2}{3} (P_{\text{t}1} - P_{\text{t}2})$ where $P_{\text{t}2}$ and $P_{\text{t}1}$ are the total pressures at time instants t_2 and t_1 ($t_2 > t_1$) respectively

P _{total} (atm)	Time (sec)	$\frac{\Delta P_{N_2O_5}}{\Delta t}$ = Avg. Rate of disappearance of N_2O_5 (atm/sec.)
0.154	1	
0.215	52	$\frac{2}{3} \frac{(0.154 - 0.215)}{(52 - 1)} = -7.97 \times 10^{-4}$
0.260	103	$\frac{2}{3} \frac{(0.215 - 0.260)}{(103 - 52)} = -5.88 \times 10^{-4}$ $2 \cdot (0.260 - 0.315)$
0.315	205	$\frac{2(0.260 - 0.315)}{3(205 - 103)} = -3.59 \times 10^{-4}$ $2(0.315 - 0.346) = 1.00 \times 10^{-4}$
0.346	309	$\frac{2}{3} \frac{(0.315 - 0.346)}{(309 - 205)} = -1.99 \times 10^{-4}$

Example - 5 In an ore containing Uranium, the ratio of U^{238} to Pb^{206} nuclei is 3. Calculate the age of the ore, assuming that all the lead present in the ore is the final stable product of U^{238} . The half life of U^{238} is 4.5×10^9 years.

SOLUTION:

Note: The radio active decay follows first order kinetics. Here, we take $N_0 \equiv C_0$ and $N_t \equiv C_t$ and $\lambda \equiv k$

The first order rate equation for radioactive decay is:

$$\lambda\,t = 2.303\log\frac{N_0}{N_t} \qquad \qquad \text{where } \lambda = \frac{0.693}{t_\frac{1}{2}}$$

 $N_0 = initial nuclei (at t = 0)$

 $N_t = \text{final nuclei (at t)}$

 λ = decay constant or disintegration constant

$$\begin{array}{ccc} & U^{238} & \longrightarrow & Pb^{206} \\ N_0 & \equiv & x & 0 \\ N_t & \equiv & x - y & y \end{array}$$

$$\Rightarrow \frac{N_0}{N_t} = \frac{x}{x - y}$$
Using $\lambda t = 2.303 \log_{10} \frac{x}{x - y}$
Given: $\frac{x - y}{y} = 3 \Rightarrow \frac{x}{x - y} = \frac{4}{3}$

$$\Rightarrow t = \frac{2.303}{0.693} \times 4.5 \times 10^9 \log_{10} \frac{4}{3}$$

$$\Rightarrow t = 1.85 \times 10^9 \text{ years.}$$

Example - 6 The nucleidic ratio of $_1H^3$ to $_1H^1$ in a sample of water is 8.0×10^{-18} : 1. Tritium undergoes decay with a half life period of 12.0 years. How many tritium atoms would a 10.0 gm of such sample contain 36 years after the original sample is collected?

SOLUTION:

The ratio of tritium atoms to that of H-atoms will be same as the ratio of moles of T-atoms to that of H-atoms, since 1 mole of $T_2O \equiv 2$ mole of T atoms and 1 mole of $H_2O \equiv 2$ mole of H atoms.

Calculate the initial number of tritium atoms.

10 gm = mass of
$$T_2O$$
 + mass of H_2O
= $n_{T_2O} \times 22 + n_{H_2O} \times 18$
= $\left(8 \times 10^{-18} n_{H_2O}\right) \times 22 + n_{H_2O} \times 18$
 $\approx n_{H_2O} \times 18$
 $\Rightarrow n_{H_2O} = \frac{10}{18} = \frac{5}{9}$

$$\Rightarrow n_{T_2O} = \frac{5}{9} \times 8 \times 10^{-18} = \frac{40}{9} \times 10^{-18}$$

$$\Rightarrow (N_T)_O = (N_{T_2O}) \times 2 = \left(\frac{40}{9} \times 10^{-18} \times 6 \times 10^{23}\right) \times 2$$

$$= 5.33 \times 10^6 \text{ atoms}$$

No. of half lives =
$$\frac{36}{12}$$
 = 3

Use:
$$N_t = N_0 \left(\frac{1}{2}\right)^x = N_0 \left(\frac{1}{2}\right)^3 = \frac{1}{8} \times 5.33 \times 10^6 \text{ atoms}$$

= $6.66 \times 10^5 \text{ atoms}$

Example - 7 Dimethyl ether decomposes according to the following reaction:

$$CH_3 - O - CH_3(g) \longrightarrow CH_4(g) + CO(g) + H_2(g)$$

At a certain temperature, when ether was heated in a closed vessel, the increase in pressure with time was noted down.

Time (min)	0	10	20	30
Pressure (mm Hg)	420	522	602	678

(i) Show that the reaction is first order.

(ii) Compute the pressure of CO (g) after 109 minutes.

SOLUTION:

$$\label{eq:ch3-o-ch3} \begin{split} \operatorname{CH_3-O-CH_3}(\mathbf{g}) & \longrightarrow \operatorname{CH_4}(\mathbf{g}) + \operatorname{CO}(\mathbf{g}) + \operatorname{H_2}(\mathbf{g}) \\ & (\textit{all are gases}) \end{split}$$

time
$$CH_3 - O - CH_3$$
 CH_4 CO H_2 $t = 0$ $C_0 \equiv P_0$ 0 0

$$t = t C_t \equiv P_0 - x x x x$$

$$\Rightarrow$$
 $P_t = P_0 + 2x$

$$\Rightarrow \qquad x = \frac{1}{2} (P_t - P_0)$$

$$\Rightarrow \frac{C_0}{C_t} = \frac{P_0}{P_0 - x} = \frac{2P_0}{3P_0 - P_t}$$

Now find k₁, k₂ and k₃ using the first order kinetics

$$kt = 2.303 \log_{10} \frac{2 P_0}{3 P_0 - P_t}$$

$$k_1 = \frac{2.303}{10} \log_{10} \frac{2(420)}{3(420) - 522} = 0.0129 \text{ min}^{-1}$$

$$k_2 = \frac{2.303}{20} \log_{10} \frac{2(420)}{3(420) - 602} = 0.0122 \,\text{min}^{-1}$$

$$k_3 = \frac{2.303}{30} \log_{10} \frac{2(420)}{3(420) - 678} = 0.0123 \text{ min}^{-1}$$

As $k_1 \sim k_2 \sim k_3$, the reaction is first order.

$$k_{average} = \frac{1}{3} (k_1 + k_2 + k_3) = 0.0127 \text{ min}^{-1}$$

$$\Rightarrow$$
 $t_{1/2} = \frac{0.693}{k} = 54.56 \,\text{min}$

No. of half lives =
$$\frac{109}{54.56} \approx 2$$

$$\Rightarrow$$
 $(P_t)_{\text{CH}_3\text{OCH}_3} = P_0 \left(\frac{1}{2}\right)^2 = \frac{420}{4}$

$$= 105 \text{ mm Hg} = P_0 - x$$

$$\Rightarrow x = P_{CO} = 420 - 105 = 315 \text{ mm Hg}$$

Example - 8 The decomposition of N_2O_5 according to following reaction is first order reaction:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

After 30 min. from start of the decomposition in a closed vessel, the total pressure developed is found to be 250 mm of Hg and on complete decomposition, the total pressure is 500 mm of Hg. Calculate the rate constant of the reaction.

SOLUTION: $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$

$$t = 0$$
 P_0

$$t = t$$
 $P_0 - 2x$

$$t = t P_0 - 2x 4x x$$

$$t = \infty - 2P_0 P_0/2$$

 P_0 : initial presure ; Let P_t : pressure at 30 min and

P_m: pressure at the end of decomposition

$$\Rightarrow \qquad P_t = P_0 + 3x \qquad \Rightarrow \qquad x = \frac{1}{3} (P_t - P_0)$$

and $P_{\infty} = 2P_0 + \frac{1}{2}P_0 = \frac{5}{2}P_0$

$$\Rightarrow \qquad P_0 = \frac{2}{5} P_{\infty} = \frac{2}{5} \times 500 = 200 \text{ mm Hg}$$

For the first order kinetics

$$kt = 2.303 \log_{10} \frac{C_0}{C_t}$$

 \mathbf{C}_0 : initial concentration; $\mathbf{C}_{\mathbf{t}}$: final concentration

Now
$$\frac{C_0}{C_t} = \frac{P_0}{P_0 - 2x}$$
 and $x = \frac{1}{3}(250 - 200) = \frac{50}{3}$

$$\Rightarrow \frac{C_0}{C_t} = \frac{200}{200 - 2 \times \frac{50}{3}} = \frac{6}{5}$$

$$\Rightarrow k = \frac{1}{30} \times 2.303 \log_{10} \frac{6}{5} = 6.08 \times 10^{-3} \,\text{min}^{-1}$$

ANSWERS - IN-CHAPTER EXERCISE							
Α	1. 2, 2 L mol ⁻¹ r 6. C	nin ^{–1} 7. CD	2. Rate = 0.5 [A] 8. A		3. D	4. C	5. D
В	1. 0.25 8. 0.022 min ⁻¹ , 13. D	2. 3.125 gm 62.16 min 14. B	3. 299.85 kcal n9. D15. B	nol ^{–1}	5. 36.06 min 10. A 16. C	6. 3.76 s 11. A 17. D	7. 2, 2.5 12. A 18. C
С	 1. 16.43 days 8. B 15. A 	 0.33 hr CD AC 	3. C 10. D 17. B	4. A 11. B 18. D	5. D 12. C 19. B	6. D 13. B 20. D	7. C 14. B